

Redish Documentation

Contents:

	redish - Pythonic Redis abstraction built on top of redis-py
	Introduction

	The client

	Serializers
	Compression

	Working with keys and values

	Lists

	Dicts (Hashes)

	Sets

	Sorted sets

	redish.proxy

	Installation

	Accessing Redis via the Proxy object
	Basics

	Integer (or Counter)

	Dictionary

	List

	Set

	Sorted Set

	Proxy objects in general

	Keyspaces in proxy objects

	API Reference
	Database - redish.client

	Datatypes - redish.types

	Models - redish.models

	Proxy - redish.proxy

	Serialization - redish.serialization

	Utilities - redish.utils

	Change History
	0.0.1 [2010-04-29 04:40 P.M CET]

Indices and tables

	Index

	Module Index

	Search Page

redish - Pythonic Redis abstraction built on top of redis-py

	Version:	0.2.0

Introduction

The client

A connection to a database is represented by the redish.client.Client class:

>>> from redish.client import Client
>>> db = Client()
>>> db = Client(host="localhost", port=6379, db="") # default settings.
>>> db
<RedisClient: localhost:6379/>

Serializers

Clients can be configured to automatically serialize and deserialize values.
There are three serializers shipped with redish:

	Plain

The plain serializer does not serialize values, but does still support
compression using the encoding argument.

Note that this means you can only store string values in keys.

Example:

>>> from redish import serialization
>>> db = Client(serializer=serialization.Plain())

	Pickler

Uses the pickle module to serialize Python objects. This can store any object
except lambdas or objects not resolving back to a module.

Example:

>>> from redish import serialization
>>> db = Client(serializer=serialization.Pickler())

	JSON:

Stores values in JSON format. This supports lists, dicts, strings, numbers,
and floats. Complex Python objects can not be stored using JSON. The upside
is that it is commonly supported by other languages and platforms.

Example:

>>> from redish import serialization
>>> db = Client(serializer=serialization.JSON())

Compression

In addition these serializers can also be configured to do
compression:

Using zlib compression
>>> db = Client(serializer=serialization.Pickler(encoding="zlib"))

Working with keys and values

Set a value:

>>> db["foo"] = {"name": "George"}

Get value by key:

>>> db["foo"]
{'name': 'George'}

Delete key:

>>> del(db["foo"])

Getting nonexistent values works like you would expect from
Python dictionaries; It raises the KeyError exception:

>>> db["foo"]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "redish/client.py", line 198, in __getitem__
 raise KeyError(key)
KeyError: 'foo'

Set many keys at the same time:

>>> db.update({"name": "George Costanza",
... "company": "Vandelay Industries"})

Get a list of keys in the database:

>>> db.keys()
['company', 'name']

Get a list of keys matching a pattern:

>>> db.keys(pattern="na*")
['name']

Rename keys:

>>> db.rename("name", "user:name")
>>> db.rename("company", "user:company")
>>> db.keys("user:*")
['user:company', 'user:name']

Get all items in the database (optionally matching a pattern)
as a list of (key, value) tuples:

>>> db.items(pattern="user:*")
[('user:company', 'Vandelay Industries'), ('user:name', 'George Costanza')]

Get all values in the database (optionally where keys matches a pattern):

>>> db.values(pattern="user:*")
['Vandelay Industries', 'George Costanza']

Iterator versions of keys, values and items are also available,
as iterkeys, itervalues, iteritems respectively.

Check for existence of a key in the database:

>>> "user:name" in db
True
>>> "user:address" in db
False
>>> "user:address" not in db
True

Get and remove key from the database (atomic operation):

>>> db.pop("user:name")
'George Costanza'
>>> "user:name" in db
False

Get the number of keys present in the database:

>>> len(db)
1

Lists

Note: Lists does not currently support storing serialized objects.

Create a new list with key mylist, and initial items:

>>> l = db.List("mylist", ["Jerry", "George"])

Get items in the list as a Python list:

>>> list(l)
['Jerry', 'George']

append adds items to the end of the list:

>>> l.append("Kramer")
>>> list(l)
['Jerry', 'George', 'Kramer']

appendleft prepends item to the head of the list:

>>> l.appendleft("Elaine")
>>> list(l)
['Elaine', 'Jerry', George', 'Kramer']

Get item at index (zero based):

>>> l[2]
'George'

Check if a value is in the list using the in operator:

>>> "George" in l
True

>>> "Soup-nazi" in l
False

pop removes and returns the last element of the list:

>>> list(l)
['Elaine', 'Jerry', 'George', 'Kramer']
>>> l.pop()
'Kramer'
>>> list(l)
['Elaine', 'Jerry', 'George']

popleft removes and returns the head of the list:

>>> l.popleft()
'Elaine'
>>> list(l)
['Jerry', 'George']

Get the number of items in the list:

>>> len(l)
2

extend adds another list to the end of the list:

>>> l.extend(["Elaine", "Kramer"])
>>> list(l)
['Jerry', 'George', 'Elaine', 'Kramer']

extendleft adds another list to the head of the list:

>>> l.extendleft(["Soup-nazi", "Art"])
>>> list(l)
['Art', 'Soup-nazi', 'Jerry', 'George', 'Elaine', 'Kramer']

Get slice of list:

>>> l[2:4]
['Jerry', 'George']

Iterate over the lists items:

>>> it = iter(l)
>>> it.next()
'Art'

remove finds and removes one or more occurences of value from the
list:

>>> l.remove("Soup-nazi", count=1)
1
>>> list(l)
['Art', 'Jerry', 'George', 'Elaine', 'Kramer']

trim trims the list to the range in start, stop:

>>> l[2:4]
['George', 'Elaine']
>>> l.trim(start=2, stop=4)
>>> list(l)
['George', 'Elaine']

Dicts (Hashes)

Create a new dictionary with initial content:

>>> d = db.Dict("mydict", {"name": "George Louis Costanza"})

Get the value of key "name":

>>> d["name"]
'George Louis Costanza'

Set store another key, "company":

>>> d["company"] = "Vandelay Industries"

Check if a key exists in the dictionary, using the in operator:

>>> "company" in d
True

Remove a key:

>>> del(d["company"])
>>> "company" in d
False

Get a copy as a Python dict:

>>> dict(d)
{'name': 'George Louis Costanza'}

update updates with the contents of a dict
(x.update(y) does a merge where keys in y has precedence):

>>> d.update({"mother": "Estelle Costanza",
... "father": "Frank Costanza"})

>>> dict(d)
{'name': 'George Louis Costanza',
 'mother': 'Estelle Costanza',
 'father': 'Frank Costanza'}

Get the number of keys in the dictionary:

>>> len(d)
3

keys / iterkeys gives a list of the keys in the dictionary:

>>> d.keys()
['name', 'father', 'mother']

values / itervalues gives a list of values in the dictionary:

>>> d.values()
['George Louis Costanza', 'Frank Costanza', 'Estelle Costanza']

items / iteritems gives a list of (key, value) tuples
of the items in the dictionary:

>>> d.items()
[('father', 'Frank Costanza'),
 ('name', 'George Louis Costanza'),
 ('mother', 'Estelle Costanza')]

setdefault returns the value of a key if present, otherwise stores a
default value:

>>> d.setdefault("company", "Vandelay Industries")
'Vandelay Industries'
>>> d["company"] = "New York Yankees"
>>> d.setdefault("company", "Vandelay Industries")
'New York Yankees'

get(key, default=None) returns the value of a key if present, otherwise
returns the default value:

>>> d.get("company")
"Vandelay Industries"

>>> d.get("address")
None

pop removes a key and returns its value. Also supports an extra
parameters, which is the default value to return if the key does not exist:

>>> d.pop("company")
'New York Yankees'
>>> d.pop("company")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "redish/types.py", line 373, in pop
 val = self[key]
 File "redish/types.py", line 290, in __getitem__
 raise KeyError(key)
KeyError: 'company'

With default value, does not raise KeyError, but returns default value.
>>> d.pop("company", None)
None

Sets

Create a new set with the key myset, and initial members
"Jerry" and "George":

>>> s = db.Set("myset", ["Jerry", "George"])

Add member "Elaine" to the set:

>>> s.add("Elaine")

Check for membership:

>>> "Jerry" in s
True

>>> "Cosmo" in s:
False

Remove member from set:

>>> s.remove("Elaine")
>>> "Elaine" in s
False

Get copy of the set as a list:

>>> list(s)
['Jerry', 'George']

Create another set:

>>> s2 = x.Set("myset2", ["Jerry", "Jason", "Julia", "Michael")

Get the difference of the second set and the first:

>>> s2.difference(s)
set(['Jason', 'Michael', 'Julia'])

Get the union of the two sets:

>>> s.union(s2)
set(['Jason', 'Michael', 'Jerry', 'Julia', 'George'])

Get the intersection of the two sets:

>>> s.intersection(s2)
set(['Jerry'])

Update the set with the union of another:

>>> s.update(s2)
5
>>> s
<Set: ['Jason', 'Michael', 'Jerry', 'Julia', 'George']>

Sorted sets

Create a new sorted set with the key myzset, and initial members:

>>> z = db.SortedSet("myzset", (("foo", 0.9), ("bar", 0.1), ("baz", 0.3)))

Casting to list gives the members ordered by score:

>>> list(z)
['bar', 'baz', 'foo']

revrange sorts the members in reverse:

>>> z.revrange()
['foo', 'baz', 'bar']

score gives the current score of a member:

>>> z.score("foo")
0.90000000000000002

add adds another member:

>>> z.add("zaz", 1.2)
>>> list(z)
['bar', 'baz', 'foo', 'zaz']

increment increments the score of a member by amount (or 1 by
default):

>>> z.increment("baz")
1.3
>>> z.increment("bar", 0.2)
0.30000000000000004
>>> list(z)
['bar', 'foo', 'zaz', 'baz']

Check for membership using the in operator:

>>> "bar" in z
True

>>> "xuzzy" in z
False

remove removes a member:

>>> z.remove("zaz")
>>> "zaz" in z
False

update updates the sorted set with members from an iterable of (member,
score) tuples:

>>> z.update([("foo", 0.1), ("xuzzy", 0.6)])
>>> list(z)
['foo', 'bar', 'xuzzy', 'baz']

rank gives the position of a member in the set (0-based):

>>> z.rank("foo")
0
>>> z.rank("xuzzy")
2

revrank gives the position of a member in reverse order:

>>> z.revrank("foo")
3
>>> z.revrank("baz")
0

range_by_score gives all the member with score within a range (min /
max):

>>> z.range_by_score(min=0.3, max=0.6)
['bar', 'xuzzy']

redish.proxy

The proxy submodule offers a different view on the redis datastore: it exposes
the strings, integers, lists, hashes, sets and sorted sets within the
datastore transparently, as if they were native Python objects accessed by key
on the proxy object. They do not store serialized objects as with the rest of
redish. For example:

>>> from redish import proxy
>>> r = proxy.Proxy()

Key access yields an object that acts like the Python equivalent of the
underlying Redis structure. That structure can be read and modified as if it
is native, local object. Here, that object acts like a dict:

>>> r['mydict']
{'father': 'Frank Costanza', 'name': 'George Louis Costanza', 'mother': 'Estelle Costanza'}
>>> r['mydict']['name']
'George Louis Costanza'
>>> r['mydict']['name'] = "Georgie"
>>> r['mydict']['name']
'Georgie'

Sometimes, it may be convenient to assign a variable to the proxy object, and
use that in subsequent operations:

>>> ss = r['myset']
>>> 'George' in ss
True
>>> 'Ringo' in ss
False

The Proxy object is a subclass of a normal redis.Client object, and so
supports the same methods (other than __getitem__, __setitem__,
__contains__, and __delitem__). The object that the proxy object returns
is an instance of one of the classes from redish.types (with the exception of
unicode: those are simply serialized/unserialized from the underlying redis
data store as UTF-8).

>>> r['mycounter'] = 1
>>> cc = r['mycounter']
>>> cc += 1
>>> cc += 1
>>> r.get('mycounter')
'3'
>>> type(cc)
<class 'redish.types.Int'>

Since redis does not support empty sets, lists, or hashes, the proxy object
will (thread-)locally ‘remember’ keys that are explicitly set as empty types.
It does not currently remember container types that have been emptied as a
product of operations on the underlying store:

>>> r['newlist'] = []
>>> r['newlist'].extend([1,2])
>>> len(r['newlist'])
2

Finally, you may structure key names into arbitrary “keyspaces”
denoted by format strings:

>>> name = r.keyspace['user:%04d:name']
>>> parents = r.keyspace['user:%04d:parents']
>>> property = r.keyspace['user:%04d:%s']
>>> name[1] = 'Jerry'
>>> property[1,'parents'] = ['Morty', 'Helen']
>>> parents.items()
('user:0001:parents', ['Morty', 'Helen'])

For more information, see the redish.proxy documentation.

Installation

You can install redish either via the Python Package Index (PyPI)
or from source.

To install using pip,:

$ pip install redish

To install using easy_install,:

$ easy_install redish

If you have downloaded a source tarball you can install it
by doing the following,:

$ python setup.py build
python setup.py install # as root

Accessing Redis via the Proxy object

By mixing the type system from redish with the original redis-py’s Redis
object, the redish.proxy module gives a different kind of access to the
key-value store without pickling/unpickling and by respecting the strengths in
Redis’s types. In other words, it transparently exposes Redis as a data
structure server.

Basics

Example:

>>> from redish import proxy
>>> x = proxy.Proxy()

Ordinary key/value usage encodes strings as UTF-8, and returns unicode
objects when accessing by key:

>>> x["foo"] = "bar"
>>> x["foo"]
u'bar'

Deletion and invalid keys work as expected:

>>> del x["foo"]
>>> x["foo"]
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "redish/proxy.py", line 29, in __getitem__
 raise KeyError(key)
KeyError: 'foo'

Integer (or Counter)

When reading an integer, the proxy transparently passes an object that mimics
the behaviour of int, but is actually stored and fetched from the Redis store:

>>> x["z"] = 1
>>> x["z"]
1
>>> x["z"].__class__
<class 'redish.types.Int'>

Increment and decrement operations translate directly to Redis commands:

>>> x["z"] += 2
>>> x["z"]
3

And all other operations you would expect to perform on an integer are present:

>>> 3. * x["z"]
9.0

The proxy object can be assigned to another variable, and it will point to the
same value in the Redis store. For the most part, you can treat the variable
the same way:

>>> z = x["z"]
>>> z += 1
>>> z
4
>>> x["z"]
4

However, it is not the same in all respects: reassigning the variable is not
the same as setting the value on the key:

>>> z = 5
>>> x["z"]
4
>>> z
5
>>> z.__class__
<type 'int'>

Dictionary

By assigning a key to a dictionary type, a hash data type is created in the
Redis store. When the key is accessed, it returns a type that mimics a python
dict:

>>> x["dictionary"] = {"a": "b", "c": "d"}
>>> x["dictionary"]
{'a': 'b', 'c': 'd'}

You may access, create, test, and destroy keys within that hash as if they
were native Python keys in a dict:

>>> x["dictionary"]["c"]
'd'
>>> x["dictionary"]["e"] = "f"
>>> "e" in x["dictionary"]
True
>>> x["dictionary"].__class__
<class 'redish.types.Dict'>

List

By assigning a key in the Proxy object to a list type, a list is created in
the Redis store. When the key is accessed, it returns a type that mimics a
python list:

>>> x["Liszt"] = ['w', 'x', 'y', 'z']
>>> x["Liszt"]
['w', 'x', 'y', 'z']
>>> x["Liszt"].extend(["a", "b", "c"])
>>> x["Liszt"]
['w', 'x', 'y', 'z', 'a', 'b', 'c']
>>> x["Liszt"][-1]
'c'
>>> x["Liszt"].pop()
'c'
>>> x["Liszt"][-1]
'b'

Set

By assigning a key in the Proxy object to a set type, a set is created in the
Redis store. When the key is accessed, it returns a type that mimics a python
set:

>>> x["set"] = set(["opera", "firefox", "ie", "safari"])
>>> s = x["set"]
>>> "opera" in s
True
>>> s.remove("safari")
>>> "safari" in s
False
>>> list(s)
['opera', 'ie', 'firefox']

It may be useful to point out that assignment to a key on the proxy object
copies by value:

>>> x["game"] = x["set"]
>>> x["game"].add("mobilesafari")
True
>>> x["game"]
set(['opera', 'ie', 'firefox', 'mobilesafari'])
>>> x["set"]
set(['opera', 'ie', 'firefox'])

Sorted Set

There is no native Python equivalent of a Sorted Set. However, it resembles a
specialized dictionary in which all the values are numeric. The local
implementation of the Sorted Set type (ZSet) uses a dictionary in this way to
initialize its values:

>>> from redish.types import ZSet
>>> zs = ZSet({'c': 3, 'b': 2, 'a': 1})
>>> zs
['a', 'b', 'c']
>>> zs[-1]
'c'

The proxied equivalent in which the data resides on the Redis server is
created when setting a key to an object of the ZSet class, and is generated
when retrieving such a set:

>>> x["zs"] = zs
>>> x["zs"].rank("a")
0
>>> x["zs"].range_by_score(2,3)
['b', 'c']
>>> x["zs"].remove("c")
>>> x["zs"].items()
[('a', 1.0), ('b', 2.0)]

Proxy objects in general

A Proxy object retains all the normal methods from Redis object:

>>> x.keys()
['z', 'dictionary', 'Liszt', 'set', 'game']
>>> x.bgsave()
True

Keyspaces in proxy objects

The fact that Redis offers a flat keyspace in each of its databases is
a great benefit: it does not presuppose any structure for the keys,
and access is fast and unencumbered. However, users are likely to want
some structure in using keys, and the Keyspaces feature is a first
attempt at making key name patterns accessible to users.

At the heart, a “keyspace” is a formatstring with an associated label.
Access is achieved by accessing elements in the proxy with a tuple
argument, with the label as the first element of the tuple and the
following elements used as inputs to the formatstring:

>>> x.register_keyspace('myspace', "person:%04d:name")
'myspace'
>>> x['myspace', 1] = "Bob"
>>> x['person:0001:name']
u'Bob'

The label string is returned to facilitate structured and symbolic use
of the keyspaces, so the following is equivalent to the above:

>>> UNAME = x.register_keyspace('myspace', "person:%04d:name")
>>> x[UNAME, 1] = "Bob"
>>> x['myspace', 1]
u'Bob'

One can debug the keyspaces by feeding a tuple to actual_key:

>>> x.actual_key((UNAME, 202))
'person:0202:name'

One can also obtain a keyspace as a subset of all the keys in the
database, allowing you to treat the keyspace as a dict:

>>> names = x.keyspace(UNAME)
>>> names[1]
u'Bob'

If you like, you can bypass labeling altogether and initialize a
keyspace using a formatstring alone as a pattern:

>>> namez = x.keyspace("person:%04d:name")
>>> namez[1]
u'Bob'

Not only can you get keys that match a (glob-style) pattern, as in
redis.keys(), but you can also get values and items. When
fed a keyspace label as an argument, the formatstring is converted to
a glob-style pattern. When used with keyspaced proxies, no argument is
needed, and the keyspace’s formatstring is converted into a glob-style
pattern. The following are thus equivalent:

>>> r.keys('person:*:name')
['person:0001:name']
>>> r.keys('myspace')
['person:0001:name']
>>> names.keys()
['person:0001:name']

All these features can be combined:

>>> ZZ = x.register_keyspace('friends', '%(type)s:%(id)04d:friends')
>>> friendstore = x.keyspace(ZZ)
>>> namestore = x.keyspace('%(type)s:%(id)04d:name')
>>> frank = {'type': 'person', 'id': 203,
... 'friends': set([204, 1]), 'name': 'Frank'}
>>> fido = {'type': 'pet', 'id': 204,
... 'name': 'Fido', 'friends': set([1, 202])}
>>> for o in [frank, fido]:
... friendstore[o] = o['friends']
... namestore[o] = o['name']
>>> x['person:0203:friends']
<Set: ['1', '204']>
>>> x['pet:0204:friends'].intersection(friendstore[frank])
set(['1'])
>>> friendstore.items()
[('person:0203:friends', <Set: ['1', '204']>),
 ('pet:0204:friends', <Set: ['1', '202']>)]
>>> namestore[frank]
u'Frank'

I have no idea at this point if these experimental features are useful
to others, but they are fairly minimal, independent, and make sense to
me. Feedback is appreciated.

API Reference

	Release:	0.2

	Date:	Sep 14, 2017

	Database - redish.client

	Datatypes - redish.types

	Models - redish.models

	Proxy - redish.proxy

	Serialization - redish.serialization

	Utilities - redish.utils

Database - redish.client

Datatypes - redish.types

Models - redish.models

Proxy - redish.proxy

Serialization - redish.serialization

Utilities - redish.utils

	
redish.utils.dt_to_timestamp(dt)

	Convert datetime to UNIX timestamp.

	
redish.utils.maybe_datetime(timestamp)

	Convert datetime to timestamp, only if timestamp
is a datetime object.

Change History

0.0.1 [2010-04-29 04:40 P.M CET]

	Initial release.

 Python Module Index

 r

 		 	

 		
 r	

 	[image: -]
 	
 redish	

 	
 	
 redish.utils	

Index

 D
 | M
 | R

D

 	
 	dt_to_timestamp() (in module redish.utils)

M

 	
 	maybe_datetime() (in module redish.utils)

R

 	
 	redish.utils (module)

 _static/minus.png

_static/file.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/down.png

nav.xhtml

 Table of Contents

 		Redish Documentation

 		redish - Pythonic Redis abstraction built on top of redis-py

 		Introduction

 		The client

 		Serializers

 		Compression

 		Working with keys and values

 		Lists

 		Dicts (Hashes)

 		Sets

 		Sorted sets

 		redish.proxy

 		Installation

 		Accessing Redis via the Proxy object

 		Basics

 		Integer (or Counter)

 		Dictionary

 		List

 		Set

 		Sorted Set

 		Proxy objects in general

 		Keyspaces in proxy objects

 		API Reference

 		Database - redish.client

 		Datatypes - redish.types

 		Models - redish.models

 		Proxy - redish.proxy

 		Serialization - redish.serialization

 		Utilities - redish.utils

 		Change History

 		0.0.1 [2010-04-29 04:40 P.M CET]

_static/down-pressed.png

_static/comment.png

_static/plus.png

